Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 16(2): e13238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444256

RESUMO

Bacterial-algal interactions strongly influence marine ecosystems. Bacterial communities in cultured dinoflagellates of the family Symbiodiniaceae have been characterized by metagenomics. However, little is known about whole-genome analysis of marine bacteria associated with these dinoflagellates. We performed in silico analysis of four bacterial genomes from cultures of four dinoflagellates of the genera Symbiodinium, Breviolum, Cladocopium and Durusdinium. Comparative analysis showed that the former three contain the alphaproteobacterial family Parvibaculaceae and that the Durusdinium culture includes the family Sphingomonadaceae. There were no large genomic reductions in the alphaproteobacteria with genome sizes of 2.9-3.9 Mb, implying they are not obligate intracellular bacteria. Genomic annotations of three Parvibaculaceae detected the gene for diacetylchitobiose deacetylase (Dac), which may be involved in the degradation of dinoflagellate cell surfaces. They also had metabolic genes for dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen (N) cycle and cobalamin (vitamin B12 ) biosynthetic genes in the salvage pathway. Those three characters were not found in the Sphingomonadaceae genome. Predicted biosynthetic gene clusters for secondary metabolites indicated that the Parvibaculaceae likely produce the same secondary metabolites. Our study suggests that the Parvibaculaceae is a major resident of Symbiodiniaceae cultures with antibiotics.


Assuntos
Alphaproteobacteria , Dinoflagelados , Sphingomonadaceae , Ecossistema , Genoma Bacteriano , Antibacterianos , Vitamina B 12
3.
Front Microbiol ; 13: 1003790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386692

RESUMO

Marine fungi are largely associated with second most inhabitants of the marine ecosystem such as sponges and algae. They are important colonizers and play vital ecological roles, such as nutrient cycling, organic matter decomposition, and symbiosis with other organisms. High throughput sequencing methods have been used successfully to reveal unknown fungal communities associated with a number of hosts particularly in the marine environment. However, the diversity of marine fungi associated with sponges and brown algae in Mauritius remains largely unknown. Traditional methods based on culturing do not provide reliable estimate of fungal diversity as only those that are able to grow under laboratory conditions are dominant; in addition, a large proportion of fungi, cultured in vitro remain most of the time unidentifiable, given that there are no sporulating structures to be examined morphologically. To overcome these limitations, we employed Illumina sequencing to unravel fungi species present in the sponges, Iotrochota sp. and Biemna sp. and the brown algae Turbinaria conoides, Sargassum pfeifferae, and Sargassum obovatum, collected from the north of Mauritius. Diversity analyses revealed that Biemna sp. had the highest diversity from the sampled sponges with fungi from 24 orders being recovered while from brown algae; Turbinaria conoides had the highest diversity with recovery of fungal taxa of the orders Botryosphaeriales, Chaetothyriales, Eurotiales, Hypocreales, and Mucorales with the latter four orders being common in both sampled algae and sponges. Beta diversity analyses revealed clustering only in the algae, Turbinaria conoides, and Sargassum pfeifferae and not in the co-occurring sponges, indicating that sampling location did not have much influence on fungal diversity. Our findings provide the first amplicon sequencing based insights of the fungal communities associated with macro-algae and sponges in Mauritius and supplements research on the fungal community existing in the oceans around the world.

4.
Genome Biol Evol ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33146374

RESUMO

Photosynthetic dinoflagellates of the Family Symbiodiniaceae live symbiotically with many organisms that inhabit coral reefs and are currently classified into fifteen groups, including seven genera. Draft genomes from four genera, Symbiodinium, Breviolum, Fugacium, and Cladocopium, which have been isolated from corals, have been reported. However, no genome is available from the genus Durusdinium, which occupies an intermediate phylogenetic position in the Family Symbiodiniaceae and is well known for thermal tolerance (resistance to bleaching). We sequenced, assembled, and annotated the genome of Durusdinium trenchii, isolated from the coral, Favia speciosa, in Okinawa, Japan. Assembled short reads amounted to 670 Mb with ∼47% GC content. This GC content was intermediate among taxa belonging to the Symbiodiniaceae. Approximately 30,000 protein-coding genes were predicted in the D. trenchii genome, fewer than in other genomes from the Symbiodiniaceae. However, annotations revealed that the D. trenchii genome encodes a cluster of genes for synthesis of mycosporine-like amino acids, which absorb UV radiation. Interestingly, a neighboring gene in the cluster encodes a glucose-methanol-choline oxidoreductase with a flavin adenine dinucleotide domain that is also found in Symbiodinium tridacnidorum. This conservation seems to partially clarify an ancestral genomic structure in the Symbiodiniaceae and its loss in late-branching lineages, including Breviolum and Cladocopium, after splitting from the Durusdinium lineage. Our analysis suggests that approximately half of the taxa in the Symbiodiniaceae may maintain the ability to synthesize mycosporine-like amino acids. Thus, this work provides a significant genomic resource for understanding the genomic diversity of Symbiodiniaceae in corals.


Assuntos
Dinoflagelados/genética , Genoma , Aminoácidos/biossíntese , Vias Biossintéticas/genética , Genes , Raios Ultravioleta
5.
BMC Biol ; 18(1): 139, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33050904

RESUMO

BACKGROUND: Some dinoflagellates cause harmful algal blooms, releasing toxic secondary metabolites, to the detriment of marine ecosystems and human health. Our understanding of dinoflagellate toxin biosynthesis has been hampered by their unusually large genomes. To overcome this challenge, for the first time, we sequenced the genome, microRNAs, and mRNA isoforms of a basal dinoflagellate, Amphidinium gibbosum, and employed an integrated omics approach to understand its secondary metabolite biosynthesis. RESULTS: We assembled the ~ 6.4-Gb A. gibbosum genome, and by probing decoded dinoflagellate genomes and transcriptomes, we identified the non-ribosomal peptide synthetase adenylation domain as essential for generation of specialized metabolites. Upon starving the cells of phosphate and nitrogen, we observed pronounced shifts in metabolite biosynthesis, suggestive of post-transcriptional regulation by microRNAs. Using Iso-Seq and RNA-seq data, we found that alternative splicing and polycistronic expression generate different transcripts for secondary metabolism. CONCLUSIONS: Our genomic findings suggest intricate integration of various metabolic enzymes that function iteratively to synthesize metabolites, providing mechanistic insights into how dinoflagellates synthesize secondary metabolites, depending upon nutrient availability. This study provides insights into toxin production associated with dinoflagellate blooms. The genome of this basal dinoflagellate provides important clues about dinoflagellate evolution and overcomes the large genome size, which has been a challenge previously.


Assuntos
Dinoflagelados/metabolismo , Genoma de Protozoário , MicroRNAs/análise , Isoformas de RNA/análise , RNA de Protozoário/análise , Metabolismo Secundário , Dinoflagelados/genética , RNA de Algas/análise
6.
Sci Rep ; 9(1): 1204, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718591

RESUMO

Symbiodiniaceae dinoflagellates possess smaller nuclear genomes than other dinoflagellates and produce structurally specialized, biologically active, secondary metabolites. Till date, little is known about the evolution of secondary metabolism in dinoflagellates as comparative genomic approaches have been hampered by their large genome sizes. Here, we overcome this challenge by combining genomic and metabolomics approaches to investigate how chemical diversity arises in three decoded Symbiodiniaceae genomes (clades A3, B1 and C). Our analyses identify extensive diversification of polyketide synthase and non-ribosomal peptide synthetase genes from two newly decoded genomes of Symbiodinium tridacnidorum (A3) and Cladocopium sp. (C). Phylogenetic analyses indicate that almost all the gene families are derived from lineage-specific gene duplications in all three clades, suggesting divergence for environmental adaptation. Few metabolic pathways are conserved among the three clades and we detect metabolic similarity only in the recently diverged clades, B1 and C. We establish that secondary metabolism protein architecture guides substrate specificity and that gene duplication and domain shuffling have resulted in diversification of secondary metabolism genes.


Assuntos
Dinoflagelados/genética , Metabolismo Secundário/genética , Animais , Antozoários/genética , Evolução Biológica , Evolução Molecular , Genoma , Peptídeo Sintases/metabolismo , Filogenia , Policetídeo Sintases/genética , Policetídeos/metabolismo , Simbiose/genética
7.
BMC Genomics ; 19(1): 458, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29898658

RESUMO

BACKGROUND: The marine dinoflagellate, Symbiodinium, is a well-known photosynthetic partner for coral and other diverse, non-photosynthetic hosts in subtropical and tropical shallows, where it comprises an essential component of marine ecosystems. Using molecular phylogenetics, the genus Symbiodinium has been classified into nine major clades, A-I, and one of the reported differences among phenotypes is their capacity to synthesize mycosporine-like amino acids (MAAs), which absorb UV radiation. However, the genetic basis for this difference in synthetic capacity is unknown. To understand genetics underlying Symbiodinium diversity, we report two draft genomes, one from clade A, presumed to have been the earliest branching clade, and the other from clade C, in the terminal branch. RESULTS: The nuclear genome of Symbiodinium clade A (SymA) has more gene families than that of clade C, with larger numbers of organelle-related genes, including mitochondrial transcription terminal factor (mTERF) and Rubisco. While clade C (SymC) has fewer gene families, it displays specific expansions of repeat domain-containing genes, such as leucine-rich repeats (LRRs) and retrovirus-related dUTPases. Interestingly, the SymA genome encodes a gene cluster for MAA biosynthesis, potentially transferred from an endosymbiotic red alga (probably of bacterial origin), while SymC has completely lost these genes. CONCLUSIONS: Our analysis demonstrates that SymC appears to have evolved by losing gene families, such as the MAA biosynthesis gene cluster. In contrast to the conservation of genes related to photosynthetic ability, the terminal clade has suffered more gene family losses than other clades, suggesting a possible adaptation to symbiosis. Overall, this study implies that Symbiodinium ecology drives acquisition and loss of gene families.


Assuntos
Dinoflagelados/genética , Evolução Molecular , Genoma , Aminoácidos/biossíntese , Cicloexanóis/metabolismo , Dinoflagelados/classificação , Deleção de Genes , Genes , Família Multigênica , Filogenia , Sequências Repetitivas de Aminoácidos , Simbiose/genética
8.
BMC Genomics ; 16: 941, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26573520

RESUMO

BACKGROUND: Dinoflagellates are unicellular marine and freshwater eukaryotes. They possess large nuclear genomes (1.5-245 gigabases) and produce structurally unique and biologically active polyketide secondary metabolites. Although polyketide biosynthesis is well studied in terrestrial and freshwater organisms, only recently have dinoflagellate polyketides been investigated. Transcriptomic analyses have characterized dinoflagellate polyketide synthase genes having single domains. The Genus Symbiodinium, with a comparatively small genome, is a group of major coral symbionts, and the S. minutum nuclear genome has been decoded. RESULTS: The present survey investigated the assembled S. minutum genome and identified 25 candidate polyketide synthase (PKS) genes that encode proteins with mono- and multifunctional domains. Predicted proteins retain functionally important amino acids in the catalytic ketosynthase (KS) domain. Molecular phylogenetic analyses of KS domains form a clade in which S. minutum domains cluster within the protist Type I PKS clade with those of other dinoflagellates and other eukaryotes. Single-domain PKS genes are likely expanded in dinoflagellate lineage. Two PKS genes of bacterial origin are found in the S. minutum genome. Interestingly, the largest enzyme is likely expressed as a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly of 10,601 amino acids, containing NRPS and PKS modules and a thioesterase (TE) domain. We also found intron-rich genes with the minimal set of catalytic domains needed to produce polyketides. Ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP) along with other optional domains are present. Mapping of transcripts to the genome with the dinoflagellate-specific spliced leader sequence, supports expression of multifunctional PKS genes. Metabolite profiling of cultured S. minutum confirmed production of zooxanthellamide D, a polyhydroxy amide polyketide and other unknown polyketide secondary metabolites. CONCLUSION: This genomic survey demonstrates that S. minutum contains genes with the minimal set of catalytic domains needed to produce polyketides and provides evidence of the modular nature of Type I PKS, unlike monofunctional Type I PKS from other dinoflagellates. In addition, our study suggests that diversification of dinoflagellate PKS genes comprises dinoflagellate-specific PKS genes with single domains, multifunctional PKS genes with KS domains orthologous to those of other protists, and PKS genes of bacterial origin.


Assuntos
Dinoflagelados/genética , Policetídeo Sintases/genética , Dinoflagelados/enzimologia , Genoma , Policetídeo Sintases/classificação , Policetídeos/metabolismo , Estrutura Terciária de Proteína
9.
Nat Prod Res ; 29(4): 383-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25116959

RESUMO

This report describes the use of α-glucosidase to evaluate the anti-diabetic potential of extracts from marine sponges collected in the Mauritius waters. Initial screening at 1.0 mg/mL of 141 extracts obtained from 47 sponge species revealed 10 extracts with inhibitory activity greater than 85%. Seven of the 10 extracts were further tested at 0.1 and 0.01 mg/mL and only the methanol extract of two sponges namely Acanthostylotella sp. (ASSM) and Echinodictyum pykei (EPM) showed inhibition activity greater than 60% at 0.1 mg/mL with an IC50 value of 0.16 ± 0.02 and 0.04 ± 0.01 mg/mL, respectively, while being inactive at 0.01 mg/mL.


Assuntos
Inibidores de Glicosídeo Hidrolases/química , Poríferos/química , alfa-Glucosidases/metabolismo , Animais , Produtos Biológicos/química , Hipoglicemiantes/química , Maurício
10.
Zootaxa ; 3893(1): 101-13, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25544513

RESUMO

A new species of the alvinocaridid shrimp genus Alvinocaris Williams & Chace, 1982 is described from the Solitaire hydrothermal vent field at 2606 m depth on the Central Indian Ridge. Alvinocaris solitaire sp. nov., the first species of the genus to be recorded from the Indian Ocean, is morphologically most similar to A. lusca Williams & Chace, 1982 from the Galapagos Rift, East Pacific Rise. The new species is distinguished from A. lusca by the less produced pterygostomial angle of the carapace, the presence of small teeth on the posterolateral margin of the third pleuron, and the lack of short plumose setae on the posteromedian margin of the telson. The genetic divergence of the mitochondrial cytochrome c oxidase subunit I (COI) gene (600 bp) among the nine Alvinocaris species analyzed clearly indicates that the new taxon is distinct from the congeneric species for which genetic data are available.


Assuntos
Decápodes/anatomia & histologia , Animais , Decápodes/classificação , Decápodes/genética , Feminino , Oceano Índico , Masculino , Filogenia
11.
J Pharm Pharmacol ; 66(9): 1317-27, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24758528

RESUMO

OBJECTIVES: Based on previous screening results, the cytotoxic effect of the hexane (JDH) and ethyl acetate extracts (JDE) of the marine sponge Jaspis diastra were evaluated on HeLa cells and the present study aimed at determining their possible mechanism of cell death. METHODS: Nuclear staining, membrane potential change, flow cytometry analysis of cell cycle distribution and annexin V staining were undertaken to investigate the effects of JDE and JDH. Electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance were used to characterize an isolated bioactive molecule. KEY FINDINGS: JDE displayed an IC50 25 times more significant than the JDH. Flow cytometry analysis revealed JDE induced apoptosis in HeLa cells accompanied by the collapse of mitochondrial membrane potential. Fractionation of JDE resulted in the isolation of the known cytotoxic cyclodepsipeptide, Jaspamide. CONCLUSIONS: Taking our results together suggest that JDE can be valuable for the development of anticancer drugs, especially for cervical cancer. Further investigations are currently in progress with the aim to determine and isolate other bioactive compounds from this extract.


Assuntos
Antineoplásicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Depsipeptídeos/uso terapêutico , Poríferos/química , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Depsipeptídeos/farmacologia , Feminino , Células HeLa , Humanos , Maurício , Potencial da Membrana Mitocondrial/efeitos dos fármacos
12.
PLoS One ; 8(12): e81570, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358117

RESUMO

Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea hydrothermal vent environments. On the basis of population genetic analyses in the eastern Pacific vent fields, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four hydrothermal vent fields (the Kairei and Edmond fields near the Rodriguez Triple Junction, and the Dodo and Solitaire fields in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent fields by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent fields located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent fields, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province.


Assuntos
Distribuição Animal , Decápodes , Gastrópodes , Fontes Hidrotermais , Animais , Ecossistema , Meio Ambiente , Genética Populacional , Oceano Índico , Água do Mar
13.
Environ Toxicol Pharmacol ; 36(1): 58-65, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23598257

RESUMO

Marine sponges are considered as a gold mine of new natural products possessing numerous biological activities. We examined the cytotoxic properties of the ethyl acetate extract (JDE) of the previously unrecorded sponge, Jaspis sp. collected from Mauritius Waters. JDE displayed an interesting IC50 of 0.057±0.04µg/mL on HL-60 cells evaluated by MTS assay. Mitochondrial membrane potential change, microscopic analysis and DNA fragmentation assays also confirmed JDE induced apoptosis on HL-60 cells. Annexin V staining demonstrated that JDE induced apoptosis at different concentrations. Treatment with 100ng/mL of JDE led to an accumulation of cells in G2/M phase after 24 h, causing a significant increase of cells (24h: 5.84%; 48h: 13.41%) in sub-G1 phase suggesting that JDE can induce cell cycle arrest in G2/M phase.


Assuntos
Misturas Complexas/farmacologia , Citotoxinas/farmacologia , Poríferos , Acetatos/química , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA , Células HL-60 , Humanos , Leucemia Promielocítica Aguda , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Solventes/química
14.
Chem Biodivers ; 10(3): 442-51, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23495160

RESUMO

Patients diagnosed with Alzheimer's disease (AD) show a characteristic neurochemical deficit of acetylcholine, especially in the basal forebrains. The use of acetylcholinesterase (AChE) inhibitors to retard the hydrolysis of acetylcholine has been suggested as a promising strategy for AD treatment. In this study, we evaluated the acetylcholinesterase inhibitory (AChEI) activities of 134 extracts obtained from 45 species of marine sponges. Thin-layer chromatography (TLC) and microplate assays reveal potent acetylcholinsterase inhibitory activities of two AcOEt extracts from the sponges Pericharax heteroraphis and Amphimedon navalis PULITZER-FINALI. We further investigated the inhibitory kinetics of the extracts and found them to display mixed competitive/noncompetitive inhibition and associated their inhibitory activity partly to terpenoids. Acetylcholinesterase inhibitors from marine organisms have been rarely studied, and this study demonstrated the potential of marine sponges as a source of pharmaceutical leads against neurodegenerative diseases.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/química , Poríferos/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Cromatografia em Camada Delgada , Humanos , Cinética , Maurício , Ligação Proteica
15.
Environ Toxicol Pharmacol ; 34(2): 397-408, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22743579

RESUMO

The ocean is an exceptional source of natural products with many of them exhibiting novel structural features and bioactivity. As one of the most interesting phylum with respect to pharmacological active marine compounds, Poriferas have been investigated widely in the last few decades. A total of 60 organic extracts (hexane, ethyl acetate and butanol) from 20 species of marine sponges from Mauritius were screened at 50µg/ml in an in vitro screening assay against 9 human cancer cell lines. From these tested extracts, many exhibited pronounced cytotoxic effect at least in one of the cell lines and cell type cytotoxic specificity was observed. 27% of ethyl acetate, 11% of hexane and 2% of butanol extracts were found to possess a cytotoxicity ≥75% on 9 different cancer cell lines with the sponges Petrosia sp. 1, Petrosia sp. 2, Pericharax heteroraphis and Jaspis sp. being the most active. Overall, the HL-60cells were much more sensitive to most of the extracts than the other cell lines. We further evaluated the properties of the ethyl acetate (JDE) and hexane extract (JDH) of one sponge, Jaspis sp. on KB cells. JDE displayed a smaller IC(50) than JDH. Clonogenic assay confirmed the antiproliferative effect of both extracts while mitochondrial membrane potential change and microscopic analysis demonstrated extracts-induced apoptosis. Treatment with 100ng/ml of JDE led to a significant increase of cells (24h: 4.02%; 48h: 26.23%) in sub-G1 phase. The cytotoxic properties of the tested extracts from these sponges suggest the presence of compounds with pharmacological potential and are currently undergoing fractionation to isolate the active constituents.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Misturas Complexas/farmacologia , Poríferos , 1-Butanol/química , Acetatos/química , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Hexanos/química , Humanos , Concentração Inibidora 50 , Maurício , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Solventes/química
16.
PLoS One ; 7(3): e32965, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22431990

RESUMO

Indian Ocean hydrothermal vents are believed to represent a novel biogeographic province, and are host to many novel genera and families of animals, potentially indigenous to Indian Ocean hydrothermal systems. In particular, since its discovery in 2001, much attention has been paid to a so-called 'scaly-foot' gastropod because of its unique iron-sulfide-coated dermal sclerites and the chemosynthetic symbioses in its various tissues. Despite increasing interest in the faunal assemblages at Indian Ocean hydrothermal vents, only two hydrothermal vent fields have been investigated in the Indian Ocean. Here we report two newly discovered hydrothermal vent fields, the Dodo and Solitaire fields, which are located in the Central Indian Ridge (CIR) segments 16 and 15, respectively. Chemosynthetic faunal communities at the Dodo field are emaciated in size and composition. In contrast, at the Solitaire field, we observed faunal communities that potentially contained almost all genera found at CIR hydrothermal environments to date, and even identified previously unreported taxa. Moreover, a new morphotype of 'scaly-foot' gastropod has been found at the Solitaire field. The newly discovered 'scaly-foot' gastropod has similar morphological and anatomical features to the previously reported type that inhabits the Kairei field, and both types of 'scaly-foot' gastropods genetically belong to the same species according to analyses of their COI gene and nuclear SSU rRNA gene sequences. However, the new morphotype completely lacks an iron-sulfide coating on the sclerites, which had been believed to be a novel feature restricted to 'scaly-foot' gastropods. Our new findings at the two newly discovered hydrothermal vent sites provide important insights into the biodiversity and biogeography of vent-endemic ecosystems in the Indian Ocean.


Assuntos
Biodiversidade , Fontes Hidrotermais , Animais , Tamanho Corporal , Derme/metabolismo , Gastrópodes/anatomia & histologia , Gastrópodes/ultraestrutura , Geografia , Oceano Índico , Ferro/metabolismo , Dados de Sequência Molecular , Reologia , Estresse Mecânico , Sulfetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...